Lecture 18

Equivalence Relation and Partial Ordering

Equivalence Relation

Definition: A relation R on a set A is called equivalence relation if it is reflexive, symmetric, and transitive.

Example: Let m be an integer $m>1$. Is R an equivalence relation on \mathbb{Z} ?

$$
R=\{(a, b) \mid a \equiv b(\bmod m)\}
$$

Solution: We know that $a \equiv b(\bmod m)$ if and only if $m \mid a-b$.
R is reflexive: $(a, a) \in R$ because $m \mid a-a$.
R is symmetric: $(a, b) \in R \Longrightarrow m|(a-b) \Longrightarrow m|(b-a) \Longrightarrow(b, a) \in R$
R is transitive: $(a, b) \in R$ and $(b, c) \in R \Longrightarrow m \mid(a-b)$ and $m \mid(b-c) \ldots$

$$
\ldots \Longrightarrow m \mid a-c \Longrightarrow(a, c) \in R
$$

Equivalence Relation

Example: Is R on \mathbb{Z} an equivalence relation?

$$
R=\{(a, b) \mid a \text { divides } b\}
$$

Solution: No, because $a \mid b$ does not imply $b \mid a$. Hence, R is not symmetric.

Example: Is R on \mathbb{R} an equivalence relation?

$$
R=\{(a, b)| | a-b \mid<1\} .
$$

Solution: No, because $(.2, .9),(.9,1.8) \in R$ but $(.2,1.8) \notin R$. Hence, R is not transitive.

Equivalence Class

Definition: Let R be an equivalence relation on a set A. For any $x \in A$, the set of all elements of A that are related to x is called the equivalence class of x and denoted by $[x]$.

Example: Let $R=\{(a, b) \mid a \equiv b(\bmod 4)\}$ be an equivalence relation on \mathbb{Z}. Find [0], [2], and [6].

Solution:

$$
\begin{aligned}
{[0] } & =\{\ldots,-8,-4,0,4,8, \ldots\} \\
{[2] } & =\{\ldots,-6,-2,2,6,10, \ldots\} \\
{[6] } & =\{\ldots,-2,6,6,10,14, \ldots\}
\end{aligned}
$$

$$
\text { Observe that }[2]=[6] \text { and }[2] \cap[0]=\varnothing
$$

Equivalence Class

Theorem: Let R be an equivalence relation on a set A. These statement for element a and b of A are equivalent: (i) $a R b$ (ii) $[a]=[b]$ (iii) $[a] \cap[b] \neq \varnothing$

Proof Sketch: It's enough to show that $(i) \Longrightarrow(i i) \Longrightarrow$ (iii) \Longrightarrow (i).
Show $(i) \Longrightarrow$ (ii) using transitivity and symmetry.
Show (ii) \Longrightarrow (iii) using reflexivity.
Show (iii) \Longrightarrow (i) using transitivity and symmetry.

Partition

Definition: A collection of subsets $A_{1}, A_{2}, \ldots, \subseteq S$ forms a partition of S if:
(i) $A_{i} \neq \varnothing$
(ii) $A_{i} \cap A_{j}=\varnothing$, if $i \neq j$,
(iii) $\cup_{i} A_{i}=S$.

Example: Set of even integers and set of odd integers form a partition of \mathbb{Z}.

Equivalence Class and Partition

Theorem: If we have an equivalence relation R on A, the equivalence classes of relation form a partition of A.

Proof: Let $A_{1}, A_{2}, A_{3}, \ldots$ are the distinct equivalence classes created by R on A

$$
A_{i} \neq \varnothing:
$$

Each A_{i} is defined with respect to an element a_{i} and $a_{i} \in A_{i}$ because $\left(a_{i}, a_{i}\right) \in R$.

$$
A_{i} \cap A_{j}=\varnothing \text {, if } i \neq j:
$$

WLOG let $a_{i} \in A_{i}, a_{j} \in A_{j}$ such that $a_{i} \notin A_{j}$. Then, $\left(a_{i}, a_{j}\right) \notin R$. Hence, $A_{i} \cap A_{j}=\varnothing$.

$$
\cup_{i} A_{i}=A:
$$

Every element $a \in A$ belongs to some A_{i}. Therefore, $\cup_{i} A_{i}=A$.

Partial Ordering

Definition: A relation R on a set S is called partial ordering or partial order if it is reflexive, antisymmetric, and transitive. A set S together with a partial ordering R is called a partially ordered set or poset, and is denoted by (S, R).

Example: Is $R=\{(a, b) \mid a$ divides $b\}$ on \mathbb{Z}^{+}a partial ordering? Yes.
Example: Is $R=\{(a, b) \mid a$ is older than $b\}$ on set of people a partial ordering? No.
Notation: $a \leq b$ denotes $(a, b) \in R$ in a poset (S, R).
$a<b$ denotes $(a, b) \in R$, but $a \neq b$ in a poset (S, R).

Total Ordering

Definition: Elements a and b of a poset (S, R) are called comparable if either $a \leq b$ or $b \leq a$.

Note: Not all elements of a poset are comparable, hence the name "partial" ordering.

Definition: If (S, R) is a poset, where every two elements are comparable, S is called a totally ordered set.

Example: Is $R=\{(a, b) \mid a \leq b\}$ on \mathbb{Z} a total ordering? Yes.

Hasse Diagram

Consider poset (X, R), where $X=\{1,2,3,4,5,6\}$, and $R=\{(a, b) \mid a$ divides $b\}$.
Step 1: Draw \bullet for every element of X, and put an arrow from a to b, if $(a, b) \in R$.

Hasse Diagram

Step 2: Remove self-loops and arrows that must be present because of transitivity.

Step 3: Arrange arrows such that they are pointing upwards and remove direction.

Special Elements of a Partially Order

Definition: An element a is maximal in the poset (S, \leq) if there is no $b \in S$ such that $a<b$.
Definition: An element a is minimal in the poset (S, \leq) if there is no $b \in S$ such that $b \prec a$.
Note: Maximal and minimal may not exist and they need not be unique when they exist.

Definition: An element a is greatest in the poset (S, \preceq) if $b \leq a, \forall b \in S$.
Definition: An element a is lowest in the poset (S, \preceq) if $a \leq b, \forall b \in S$.
Note: Greatest and lowest may not exist, but when they exist they are unique.

