Lecture 18

Equivalence Relation and Partial Ordering

Equivalence Relation

and transitive.

Example: Let *m* be an integer m > 1. Is *R* an equivalence relation on \mathbb{Z} ?

 $R = \{(a, b) \mid a \equiv b \pmod{m}\}$

Solution: We know that $a \equiv b \pmod{m}$ if and only if $m \mid a - b$.

R is reflexive: $(a, a) \in R$ because $m \mid a - a$.

Definition: A relation R on a set A is called **equivalence relation** if it is reflexive, symmetric,

R is symmetric: $(a,b) \in R \implies m \mid (a-b) \implies m \mid (b-a) \implies (b,a) \in R$ R is transitive: $(a, b) \in R$ and $(b, c) \in R \implies m \mid (a - b)$ and $m \mid (b - c) \dots$ $\dots \implies m \mid a - c \implies (a, c) \in R$

Equivalence Relation

Example: Is R on \mathbb{Z} an equivalence relation? $R = \{(a, b) \mid a \text{ divides } b\}.$ **Solution:** No, because *a* | *b* does not imply *b* | *a*. Hence, *R* is not symmetric.

- **Example:** Is R on \mathbb{R} an equivalence relation?
 - $R = \{(a, b) \mid |a b| < 1\}.$

Solution: No, because $(.2,.9), (.9,1.8) \in R$ but $(.2,1.8) \notin R$. Hence, R is not transitive.

Equivalence Class

Example: Let $R = \{(a, b) \mid a \equiv b \pmod{4}\}$ be an equivalence relation on \mathbb{Z} . Find [0], [2], and [6].

Solution:

 $[0] = \{\ldots, -8, -4, 0, 4, 8, \ldots\}$ $[2] = \{\ldots, -6, -2, 2, 6, 10, \ldots\}$ $[6] = \{\ldots, -2, 6, 6, 10, 14, \ldots\}$ Observe that [2] = [6] and $[2] \cap [0] = \emptyset$

- **Definition:** Let R be an equivalence relation on a set A. For any $x \in A$, the set of all elements of A that are related to x is called the equivalence class of x and denoted by [x].

Equivalence Class

b of A are equivalent: (i) aRb (ii) [a] = [b] (iii) $[a] \cap [b] \neq \emptyset$ **Proof Sketch:** It's enough to show that $(i) \Longrightarrow (ii) \Longrightarrow (iii) \Longrightarrow (iii) \Longrightarrow (i)$. Show (i) \implies (ii) using transitivity and symmetry. Show (*ii*) \implies (*iii*) using reflexivity.

- **Theorem:** Let R be an equivalence relation on a set A. These statement for element a and

 - Show (*iii*) \implies (*i*) using transitivity and symmetry.

Partition

Definition: A collection of subsets $A_1, A_2, \ldots, \subseteq S$ forms a partition of S if: $(i) A_i \neq \emptyset$

(*ii*) $A_i \cap A_j = \emptyset$, if $i \neq j$, (*iii*) $\cup_i A_i = S$.

Partitions of S

Example: Set of even integers and set of odd integers form a partition of \mathbb{Z} .

Equivalence Class and Partition

Theorem: If we have an equivalence relation R on A, the equivalence classes of relation form a partition of A.

Proof: Let A_1, A_2, A_3, \ldots are the distinct equivalence classes created by R on A

 $A_i \neq \emptyset$:

 $A_i \cap A_i = \emptyset$, if $i \neq j$:

WLOG let $a_i \in A_i$, $a_j \in A_j$ such that $a_i \notin A_j$. Then, $(a_i, a_j) \notin R$. Hence, $A_i \cap A_j = \emptyset$.

 $\bigcup_i A_i = A$:

Each A_i is defined with respect to an element a_i and $a_i \in A_i$ because $(a_i, a_i) \in R$.

Every element $a \in A$ belongs to some A_i . Therefore, $\bigcup_i A_i = A$.

Partial Ordering

- **Definition:** A relation R on a set S is called **partial ordering** or **partial order** if it is reflexive, antisymmetric, and transitive. A set S together with a partial ordering R is called a partially ordered set or poset, and is denoted by (S, R).
- **Example:** Is $R = \{(a, b) \mid a \text{ divides } b\}$ on \mathbb{Z}^+ a partial ordering? **Yes.**
- **Example:** Is $R = \{(a, b) \mid a \text{ is older than } b\}$ on set of people a partial ordering? No.
- Notation: $a \leq b$ denotes $(a, b) \in R$ in a poset (S, R).

 $a \prec b$ denotes $(a, b) \in R$, but $a \neq b$ in a poset (S, R).

Total Ordering

Definition: Elements a and b of a poset (S, R) are called **comparable** if either $a \leq b$ or $b \leq a$.

Note: Not all elements of a poset are comparable, hence the name "partial" ordering.

Definition: If (S, R) is a poset, where every two elements are comparable, S is called a totally ordered set.

Example: Is $R = \{(a, b) \mid a \leq b\}$ on \mathbb{Z} a total ordering? Yes.

Hasse Diagram

Consider poset (*X*, *R*), where $X = \{1, 2, 3, 4, 5, 6\}$, and $R = \{(a, b) \mid a \text{ divides } b\}$.

Step 1: Draw • for every element of X, and put an arrow from a to b, if $(a, b) \in R$.

Hasse Diagram

Step 2: Remove self-loops and arrows that must be present because of transitivity.

Why we can ensure this?

Step 3: Arrange arrows such that they are pointing upwards and remove direction.

Special Elements of a Partially Order

Definition: An element a is greatest in the poset (S, \leq) if $b \leq a, \forall b \in S$.

Definition: An element a is **lowest** in the poset (S, \leq) if $a \leq b, \forall b \in S$.

Note: Greatest and lowest may not exist, but when they exist they are unique.

- **Definition:** An element a is maximal in the poset (S, \leq) if there is no $b \in S$ such that $a \prec b$.
- **Definition:** An element a is minimal in the poset (S, \leq) if there is no $b \in S$ such that $b \prec a$.
- Note: Maximal and minimal may not exist and they need not be unique when they exist.

