
Lecture 18

Equivalence Relation and Partial Ordering



Definition: A relation  on a set  is called equivalence relation if it is reflexive, symmetric,

and transitive.

R A

Equivalence Relation

Example: Let  be an integer . Is  an equivalence relation on ?m m > 1 R ℤ

  mod R = {(a, b) ∣ a ≡ b ( m)}
Solution: We know that  mod  if and only if   .a ≡ b ( m) m | a − b

 is reflexive:R  because   .(a, a) ∈ R m ∣ a − a

 is symmetric:R (a, b) ∈ R   ⟹ m ∣ (a − b)   ⟹ m ∣ (b − a)   ⟹ (b, a) ∈ R

 is transitive:R   and  (a, b) ∈ R (b, c) ∈ R     and  ⟹ m ∣ (a − b) m ∣ (b − c)

… ⟹ m ∣ a − c

…

⟹ (a, c) ∈ R ◼



Equivalence Relation

Example: Is  on  an equivalence relation?R ℤ

  divides .R = {(a, b) ∣ a b}
Solution: No, because  does not imply . Hence,  is not symmetric.a ∣ b b ∣ a R

Example: Is  on  an equivalence relation?R ℝ

 .R = {(a, b) ∣ |a − b | < 1}
Solution: No, because ,  but . Hence,  is not transitive.(.2,.9) (.9,1.8) ∈ R (.2,1.8) ∉ R R ◼

◼



Equivalence Class

Definition: Let  be an equivalence relation on a set . For any , the set of all

elements of  that are related to  is called the equivalence class of  and denoted by .

R A x ∈ A
A x x [x]

Example: Let   mod  be an equivalence relation on .

Find and .

R = {(a, b) ∣ a ≡ b ( 4)} ℤ
[0], [2], [6]

Solution:
 [0] = {…,   − 8,  − 4, 0, 4, 8, …}

 [2] = {…,   − 6,  − 2, 2, 6, 10, …}

 [6] = {…,   − 2, 6, 6, 10, 14, …}

◼
Observe that  and [2] = [6] [2] ∩ [0] = ∅



Equivalence Class

Theorem: Let  be an equivalence relation on a set . These statement for element  and

 of  are equivalent:        

R A a
b A (i) aRb (ii) [a] = [b] (iii) [a] ∩ [b] ≠ ∅
Proof Sketch: It’s enough to show that    .(i) ⟹ (ii) ⟹ (iii) ⟹ (i)

Show  using transitivity and symmetry.(i) ⟹ (ii)
Show  using reflexivity.(ii) ⟹ (iii)
Show  using transitivity and symmetry.(iii) ⟹ (i)

◼



Partition
Definition: A collection of subsets  forms a partition of  if: 

  

  if ,

  . 

A1, A2, …, ⊆ S S
(i) Ai ≠ ∅
(ii) Ai ∩ Aj = ∅, i ≠ j
(iii) ∪i Ai = S

Example: Set of even integers and set of odd integers form a partition of .ℤ

Partitions of S

A1

A2

A3

A4

A5



Equivalence Class and Partition
Theorem: If we have an equivalence relation  on , the equivalence classes of relation

form a partition of .

R A
A

Proof: Let , , ,  are the distinct equivalence classes created by  on A1 A2 A3 … R A

:Ai ≠ ∅

, if :Ai ∩ Aj = ∅ i ≠ j

:∪i Ai = A

Each  is defined with respect to an element  and  because .Ai ai ai ∈ Ai (ai, ai) ∈ R

Every element  belongs to some . Therefore, .a ∈ A Ai ∪i Ai = A

WLOG let ,  such that .ai ∈ Ai aj ∈ Aj ai ∉ Aj Then, .(ai, aj) ∉ R Hence,  .Ai ∩ Aj = ∅

◼



Partial Ordering

Definition: A relation  on a set  is called partial ordering or partial order if it is reflexive,

antisymmetric, and transitive.

R S
A set  together with a partial ordering  is called a partiallyS R

ordered set or poset, and is denoted by . (S, R)

Example: Is  divides  on  a partial ordering?R = {(a, b) ∣ a b} ℤ+

Example: Is  is older than  on set of people a partial ordering?R = {(a, b) ∣ a b}

Yes.

No.

Notation:  denotes  in a poset . a ⪯ b (a, b) ∈ R (S, R)

 denotes , but  in a poset .a ≺ b (a, b) ∈ R a ≠ b (S, R)



Total Ordering

Definition: Elements  and  of a poset  are called comparable if either  or .a b (S, R) a ⪯ b b ⪯ a

Note: Not all elements of a poset are comparable, hence the name “partial” ordering.

Definition: If  is a poset, where every two elements are comparable,  is called a 

totally ordered set.

(S, R) S

Example: Is    on  a total ordering?R = {(a, b) ∣ a ≤ b} ℤ Yes.



Hasse Diagram

Consider poset , where , and  divides .(X, R) X = {1,2,3,4,5,6} R = {(a, b) ∣ a b}

Step 1: Draw    for every element of , and put an arrow from  to , if . X a b (a, b) ∈ R

1

2 3

54

6



Step 2: Remove self-loops and arrows 

that must be present because of transitivity. 

Hasse Diagram

Step 3: Arrange arrows such that they

are pointing upwards and remove direction.

1

2 3

54

6

1

2 3

54

6

Why we can ensure this?



Special Elements of a Partially Order

Definition: An element  is maximal in the poset  if there is no  such that . a (S, ⪯ ) b ∈ S a ≺ b

Definition: An element  is minimal in the poset  if there is no  such that . a (S, ⪯ ) b ∈ S b ≺ a

Note: Maximal and minimal may not exist and they need not be unique when they exist.

Definition: An element  is greatest in the poset  if , . a (S, ⪯ ) b ⪯ a ∀b ∈ S

Definition: An element  is lowest in the poset  if , . a (S, ⪯ ) a ⪯ b ∀b ∈ S

Note: Greatest and lowest may not exist, but when they exist they are unique.


